A Quasar Turns On

A Quasar Turns On[1]

The intermediate Palomar Transient Factory (iPTF) has discovered a quasar—the brightly-shining, active nucleus of a galaxy—abruptly turning on in what appears to be the fastest such transition ever seen in such an object.

Quasars are expected to show variations in brightness on timescales of hours to millions of years, but it’s not often that we get to study their major variability in real time! So far, we’ve discovered only a dozen “changing-look” quasars—active galactic nuclei that exhibit major changes in their spectral class and brightness between observations. Roughly half of these were quasars that turned on and half were quasars that turned off, generally on timescales of maybe 5 or 10 years.

In June 2016, however, a team of scientists discovered iPTF 16bco, a nuclear transient that wasn’t there the last time Palomar checked in 2012. A search through archival Sloan Digital Sky Survey and GALEX data—in addition to some follow-up x-ray imaging and spectroscopic observations—told the team what they needed to know: iPTF 16bco is a quasar that only just turned on within the 500 days preceding the iPTF observations.

This source, in fact, is a 100-million-solar-mass black hole located at the center of a galaxy. In just over a year, the source changed classification from a galaxy with weak narrow-line emission to a quasar with characteristic strong, broad emission lines and a ten-fold increase in continuum brightness! What caused this sudden transition?

The authors conclude that the best-fitting explanation is one in which the galaxy’s nucleus already had a preexisting accretion disk, but the disk recently developed an instability. That instability caused more gas to rapidly feed onto the black hole, bumping the accretion rate up a notch and resulting in the quasar suddenly brightening.

Continued observations of IPTF 16bco will certainly help us to better understand what’s happening in this unusual source. In the meantime, its rapid change of state pushes the limits of accretion disk theory and presents us with an intriguing challenge to our understanding of quasars.

[1] American Astronomical Society Research highlights. See also S. Gezari et al 2017 ApJ 835 144. doi:10.3847/1538-4357/835/2/144

Leave a comment